This LangChain course looks at how LangChain can simplify and enhance working with a Large Language Model. This also includes a project to use Qdrant vector database search and a Strreamlit app with chat history. I used OpenAI ChatGPT as it's currently the most widely used and easy to use when you only have a regular laptop computer. See below for link to all of the LangChain code used on GitHub.
🟢 This video is split into the same chapters as the official LangChain documentation. It demonstrates the Python code to use LangChain Models, Prompts, Chains, Memory, Indexes, Agents and Tools.
🟢 The video also demonstrates using Qdrant as a vector database to enable retrieval of embedded vectors along with tips on how to debug LangChain and how to set up a project from scratch.
🟢 As well as the regular examples you my find on the LangChain documentation pages I also show how to create a video suggestion chatbot and in the 'indexes' chapter I show you how to create a full project to query your documents, 'upserting' data from a text document and then querying it.
-Chapters -
00:58 why we need LangChain
02:37 register with openai
04:13 models
10:37 prompts
24:58 chains
28:35 memory
32:53 indexes
52:01 tools and agents
⛓️🦜 LangChain 🦜⛓️ Playlist : • OpenAI & LangChain & chatGPT
Thumbs up yeah? (cos Algos..)
Your Complete Toolbox for Web Scraping - 10% discount here :
🏆 https://scrapeops.io/?fpr=ken56
If you want a fast VPS server with Python installed check out :
🟩 https://webdock.io/en?maff=wdaff--170
contact : https://redandgreen.co.uk/contact/
🟢 LangChain Beginner's Guide - Step-by-Step Tutorial | How to use LangChain
#langchain #aitutorialforbeginners #LearnLangChain
Смотрите видео Learn LangChain - full tutorial | ChatGPT онлайн, длительностью часов минут секунд в хорошем качестве, которое загружено на канал Python 360 01 Январь 1970. Делитесь ссылкой на видео в социальных сетях, чтобы ваши подписчики и друзья так же посмотрели это видео. Данный видеоклип посмотрели 1,098 раз и оно понравилось 28 посетителям.