PlasticityNet: Learning to Simulate Metal, Sand, and Snow for Optimization Time Integration

Published: 14 April 2024
on channel: Yin Yang
7
0

PlasticityNet: Learning to Simulate Metal, Sand, and Snow for Optimization Time Integration
Xuan Li, Yadi Cao, Minchen Li, Yin Yang, Craig Schroeder, Chenfanfu Jiang
NeurIPS, 2022
====================
In this paper, we propose a neural network-based approach for learning to represent the behavior of plastic solid materials ranging from rubber and metal to sand and snow. Unlike elastic forces such as spring forces, these plastic forces do not result from the positional gradient of any potential energy, imposing great challenges on the stability and flexibility of their simulation. Our method effectively resolves this issue by learning a generalizable plastic energy whose derivative closely matches the analytical behavior of plastic forces. Our method, for the first time, enables the simulation of a wide range of arbitrary elasticity-plasticity combinations using time step-independent, unconditionally stable optimization-based time integrators. We demonstrate the efficacy of our method by learning and producing challenging 2D and 3D effects of metal, sand, and snow with complex dynamics.


Watch video PlasticityNet: Learning to Simulate Metal, Sand, and Snow for Optimization Time Integration online, duration hours minute second in high quality that is uploaded to the channel Yin Yang 14 April 2024. Share the link to the video on social media so that your subscribers and friends will also watch this video. This video clip has been viewed 7 times and liked it 0 visitors.